Neuronal mechanisms mediating the integration of respiratory responses to hypoxia.

نویسندگان

  • F Hayashi
  • Y Fukuda
چکیده

The activation of peripheral chemoreceptors by hypoxia or electrical stimulation of the carotid sinus nerve elicited a hypoxic respiratory response consisting of both stimulatory and subsequent or simultaneous inhibitory components (hypoxic respiratory stimulation and depression). Both components have different time domains of responses (time-dependent response), providing an integrated respiratory response to hypoxia. This review has focused on the neuroanatomical and neurophysiological correlations responsible for these responses and their neuropharmacological mechanisms. Hypoxic respiratory depression is characterized by the initial activation of respiration followed by a progressive and gradual decline in ventilation during prolonged and/or severe hypoxic exposure (biphasic response). The responsible mechanisms for the depression are located within the central nervous system and may be dependent upon activity from peripheral chemoreceptor. Two underlying mechanisms contributing to the depression have been advocated. (1) Change in synaptic transmission: Within the neuronal network controlling the hypoxic respiratory response, hypoxia might induce the enhancement of inhibitory neurotransmission (modulation), disfacilitation of excitatory neruotransmission or both. (2) Change in the membrane property of respiratory neurons: Hypoxia might suppress the membrane excitability of respiratory neurons composing the hypoxic respiratory response via modulating ion channels, leading to hyperpolarization or depolarization blocking of the neurons. However, the quantitative aspects of Pao(2) (degree and duration of hypoxic exposure) to induce these changes and the susceptibility of both mechanisms to the Pao(2) level have not yet been clearly elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...

متن کامل

Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...

متن کامل

HY POXIA AND I TS INFLUEN CES ON THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS OF SPONTANEOUSLY BREATHING CATS

Effects of acute systemic hypoxia on the cardiovascular system (CYS) and respiration of spontaneously breathing cats were studied in two conditions. 1): Hypoxic air (6-8% 02 in N2) was given to the animal to induce systemic hypoxia for 20 minutes. Hyperventilation at this condition lowered arterial C02 tension (PaC02 hypocapnia). 2): In the second run, induction of hypocapnia was prevented ...

متن کامل

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Japanese journal of physiology

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 2000